## Dynamics of mobile impurity in one-dimensional quantum gas

E. Burovski<sup>1</sup>, V. Cheianov<sup>1</sup>, O. Gamayun<sup>1,2</sup>, and O. Lychkovskiy<sup>1,3</sup>

<sup>1</sup>Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom

<sup>2</sup>Bogolyubov Institute for Theoretical Physics, Kyiv 03680, Ukraine

<sup>3</sup>Institute for Theoretical and Experimental Physics, 25 B. Cheremushkinskaya, Moscow 117218, Russia

e-mail: o.lychkovskiy@lancaster.ac.uk

Several theoretical results on the dynamics of mobile impurity in one-dimensional quantum gas are reported. Quantum gas is modeled by noninteracting fermions. Due to boson-fermion correspondence valid in 1D this is equivalent to the Tonks-Girardeau gas of impenetrable bosons [1]. The interaction between the impurity and the host fermions is pointlike and repulsive:  $\hat{V} = g \int dx \hat{\rho}_h(x) \hat{\rho}_i(x)$ , where  $\hat{\rho}_h(x)$  and  $\hat{\rho}_i(x)$ are density operators of the host fermions and the impurity, respectively. The mass of the host particles is taken to be 1 while the mass of the impurity is  $m_i$ . At t = 0 the fermions are at equilibrium at zero temperature while the impurity is prepared in a state with a well-defined momentum  $p_0$ . We are interested in the average impurity momentum as a function of time and initial momentum,  $p(t; p_0)$ , and especially in the asymptotic impurity momentum  $p_{\infty}(p_0) \equiv p(\infty; p_0)$ .

In the  $m_i = 1$  case the model is solvable via Bethe ansatz [2, 3]. Recently this case was studied in Ref. [4] in the strong coupling regime, g > 1. In particular, it was argued that the asymptotic impurity momentum is nonzero. This conclusion was based on a computer simulation which is unavoidable while handling Bethe solution.

We concentrate on the weak coupling case which permits perturbative study. The main results we report are as follows:

- An exact lower bound on  $p_{\infty}(p_0)$  for  $|p_0| < r_0 \equiv \min\{1, m_i\} \cdot k_{\rm F}$  is obtained. The existence of this bound rigorously proves that the impurity momentum does not relax to zero, at least for  $|p_0| < r_0$ .
- It is shown that in the zeroth order in  $g^2$  the asymptotic impurity momentum as a function of the initial momentum satisfies the following integral equation:

$$p_{\infty}(p_0) = p_{\infty}^{(1)}(p_0) + \int dr K(p_0, r) \ p_{\infty}(r), \quad (1)$$

where  $p_{\infty}^{(1)}(p_0)$  and  $K(p_0, r)$  are known functions. This equation can be solved iteratively, the first iteration being  $p_{\infty}^{(1)}(p_0)$ . The *n*th iteration provides an exact solution for  $|p_0| < r_n$ ; for  $|p_0| > r_n$ the discrepancy between the exact solution and the *n*th iteration can be bounded from above. Points  $\{r_n\}$  form an ascending sequence with  $\lim_{n \to \infty} r_n = \max\{1, m_i\} \cdot k_{\rm F}.$  The asymptotic momentum is presented on Fig. 1.

• Next order corrections (~  $g^2$ ) to the above results are obtained.



Figure 1: The asymptotic impurity momentum  $p_{\infty}$  as a function of the initial impurity momentum  $p_0$  when impurity is lighter (upper plot) and heavier (lower plot) than the host particles. Solid green line – an iterative solution (two iterations) of eq. (1). This solution is exact below some point  $r_2$  and approximate above this point. Shaded area represents the maximal error: the exact solution of eq. (1) lies inside the shaded area. Notice much better convergence of iterations in the case  $m_i < 1$ .

- [1] M. Girardeau, J. Math. Phys. 1, 516 (1960).
- [2] J. B. McGuire, J. Math. Phys. 6, 432 (1965).
- [3] H. Castella and X. Zotos, Phys. Rev. B 47, 16186 (1993).
- [4] C. J. M. Mathy, M. B. Zvonarev and E. Demler, Nature Physics 8, 881 (2012).