<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body bgcolor="#FFFFFF" text="#000000">
Четверг 31 мая 2018 г.<br>
Теоретический семинар в ИФП, 11:30.<br>
<br>
<br>
Baruch Meerson (Hebrew University of Jerusalem)<br>
<br>
<font size="+1"><b>Large deviations of surface height in the
Kardar-Parisi-Zhang equation</b></font><b><br>
</b><br>
The Kardar-Parisi-Zhang (KPZ) equation describes an important
universality class of nonequilibrium stochastic growth. There has
been a surge of recent interest in the one-point probability
distribution P(H,t) of height H of the evolving interface at time t
in one dimension. I will show how one can use the optimal
fluctuation method (OFM) to evaluate P(H,t) for different initial
conditions and in different dimensions.<br>
<br>
In one dimension the central part of the short-time height
distribution is Gaussian, but the tails are non-Gaussian and
strongly asymmetric. One interesting initial condition is an
ensemble of Brownian interfaces, where we found a singularity of the
large deviation function of the height at a critical value of |H|.
This singularity results from a breakdown of mirror symmetry of the
optimal path of the system, and it has the character of a
second-order phase transition. At d>2 the OFM is valid, in the
weak-coupling regime, at all times. Here the long-time height
distribution P(H) is time-independent, and we use the OFM to
determine the Gaussian body and strongly asymmetric non-Gaussian
tails of P(H).<br>
<br>
--------------------------------------------<br>
Информация о всех запланированных семинарах:<br>
<a href="http://itp.ac.ru/ru/seminars/kapitza-institute/">http://itp.ac.ru/ru/seminars/kapitza-institute/</a><br>
</body>
</html>