<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Уважаемые сотрудники ИТФ,<br>
    <br>
    На заседании Ученого совета ИТФ в пятницу 18 января будут заслушаны
    доклады:<br>
    <br>
    1) Б.Г. Захаров (длинный доклад)<br>
    <b>Recent applications of the light-cone path integral formalism to
      the radiative effects in </b><b><span class="MathJax"
        id="MathJax-Element-1-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
        role="presentation"><nobr><span class="math" id="MathJax-Span-1"
            style="width: 1.172em; display: inline-block;"><span
              style="display: inline-block; position: relative; width:
              1.227em; height: 0px; font-size: 93%;"><span
                style="position: absolute; clip: rect(1.728em,
                1001.18em, 2.747em, -1000em); top: -2.571em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-2"><span class="mi"
                    id="MathJax-Span-3" style="font-family: STIXGeneral;
                    font-style: italic;">A</span><span class="mi"
                    id="MathJax-Span-4" style="font-family: STIXGeneral;
                    font-style: italic;">A</span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.571em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.054em;
              border-left: 0px solid; width: 0px; height: 0.73em;"></span></span></nobr></span></b><b>-collisions
      due to the induced gluon/photon emission in the QCD matter</b><br>
    <div class="abstract tex">
      <br>
      In this talk I discuss some recent applications of the light-cone
      path integral (LCPI) approach to the induced gluon/photon emission
      in the
      quark-gluon plasma (QGP) in <span class="MathJax"
        id="MathJax-Element-2-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
        role="presentation"><nobr><span class="math" id="MathJax-Span-5"
            style="width: 1.069em; display: inline-block;"><span
              style="display: inline-block; position: relative; width:
              1.207em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(1.676em,
                1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-6"><span class="mi"
                    id="MathJax-Span-7" style="font-family: STIXGeneral;
                    font-style: italic;">A</span><span class="mi"
                    id="MathJax-Span-8" style="font-family: STIXGeneral;
                    font-style: italic;">A</span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.557em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.063em;
              border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>-collisions
      at RHIC-LHC energies.
      I start with a brief discussion of the basic formulas of the LCPI
      formalism.
      Then I present the results for the nuclear modification of the
      photon-tagged jets in <span class="MathJax"
        id="MathJax-Element-3-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
        role="presentation"><nobr><span class="math" id="MathJax-Span-9"
            style="width: 1.069em; display: inline-block;"><span
              style="display: inline-block; position: relative; width:
              1.207em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(1.676em,
                1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-10"><span class="mi"
                    id="MathJax-Span-11" style="font-family:
                    STIXGeneral; font-style: italic;">A</span><span
                    class="mi" id="MathJax-Span-12" style="font-family:
                    STIXGeneral; font-style: italic;">A</span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.557em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.063em;
              border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>
      collisions within the jet quenching scheme
      based on the LCPI approach to the induced gluon emission.
      The calculations are performed for running coupling.
      Collisional energy loss is treated as a perturbation
      to the radiative mechanism. We obtain a reasonable agreement with
      the recent
      data from the STAR Collaboration on the mid-rapidity nuclear
      modification factor <span class="MathJax"
        id="MathJax-Element-4-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mrow
class="MJX-TeXAtom-ORD"><mi>A</mi><mi>A</mi></mrow></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-13" style="width: 1.14em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 1.278em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.128em,
                1001.28em, 1.357em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-14"><span
                    class="msubsup" id="MathJax-Span-15"><span
                      style="display: inline-block; position: relative;
                      width: 1.272em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.111em,
                        1000.38em, 4.19em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-16" style="font-family:
                          STIXGeneral; font-style: italic;">I<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.051em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.333em;"><span class="texatom"
                          id="MathJax-Span-17"><span class="mrow"
                            id="MathJax-Span-18"><span class="mi"
                              id="MathJax-Span-19" style="font-size:
                              70.7%; font-family: STIXGeneral;
                              font-style: italic;">A</span><span
                              class="mi" id="MathJax-Span-20"
                              style="font-size: 70.7%; font-family:
                              STIXGeneral; font-style: italic;">A</span></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.194em;
              border-left: 0px solid; width: 0px; height: 0.832em;"></span></span></nobr></span>
      for Au+Au collisions at <span class="MathJax"
        id="MathJax-Element-5-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>200</mn></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-21" style="width: 3.484em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 3.906em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(1.659em,
                1003.88em, 3.039em, -1000em); top: -2.557em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-22"><span class="msqrt"
                    id="MathJax-Span-23"><span style="display:
                      inline-block; position: relative; width: 1.126em;
                      height: 0px;"><span style="position: absolute;
                        clip: rect(3.322em, 1000.37em, 4.203em,
                        -1000em); top: -3.977em; left: 0.737em;"><span
                          class="mrow" id="MathJax-Span-24"><span
                            class="mi" id="MathJax-Span-25"
                            style="font-family: STIXGeneral; font-style:
                            italic;">s</span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; clip: rect(0.912em,
                        1000.39em, 1.367em, -1000em); top: -1.81em;
                        left: 0.737em;"><span style="display:
                          inline-block; overflow: hidden;
                          vertical-align: -0.089em; border-top: 1.3px
                          solid; width: 0.389em; height: 0px;"></span><span
                          style="display: inline-block; width: 0px;
                          height: 1.065em;"></span></span><span
                        style="position: absolute; clip: rect(2.821em,
                        1000.77em, 4.201em, -1000em); top: -3.719em;
                        left: 0em;"><span style="font-family:
                          STIXVariants;">√</span><span style="display:
                          inline-block; width: 0px; height: 3.977em;"></span></span></span></span><span
                    class="mo" id="MathJax-Span-26" style="font-family:
                    STIXGeneral; padding-left: 0.313em;">=</span><span
                    class="mn" id="MathJax-Span-27" style="font-family:
                    STIXGeneral; padding-left: 0.313em;">200</span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.557em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.299em;
              border-left: 0px solid; width: 0px; height: 0.965em;"></span></span></nobr></span>
      GeV
      for parametrization of running <span class="MathJax"
        id="MathJax-Element-6-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>&#x03B1;</mi><mi>s</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-28" style="width: 0.856em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.923em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.92em,
                1.367em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-29"><span
                    class="msubsup" id="MathJax-Span-30"><span
                      style="display: inline-block; position: relative;
                      width: 0.902em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.55em, 4.201em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-31" style="font-family:
                          STIXGeneral; font-style: italic;">α</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.552em;"><span class="mi" id="MathJax-Span-32"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">s</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.203em;
              border-left: 0px solid; width: 0px; height: 0.653em;"></span></span></nobr></span>
      consistent with that necessary for description of the data on
      suppression of the high-<span class="MathJax"
        id="MathJax-Element-7-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-33" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-34"><span
                    class="msubsup" id="MathJax-Span-35"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-36" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-37"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>
      spectra.
      The main part of the talk will be devoted to the radiative
      contribution
      to the jet <span class="MathJax" id="MathJax-Element-8-Frame"
        tabindex="0" style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-38" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-39"><span
                    class="msubsup" id="MathJax-Span-40"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-41" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-42"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
      in the QGP.
      For the first time the analysis of the radiative <span
        class="MathJax" id="MathJax-Element-9-Frame" tabindex="0"
        style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-43" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-44"><span
                    class="msubsup" id="MathJax-Span-45"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-46" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-47"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
      of a fast
      quark in the QGP is performed accounting for the real and virtual
      two-parton
      states beyond the soft gluon approximation. It is shown that
      radiative processes can
      strongly suppress the radiative <span class="MathJax"
        id="MathJax-Element-10-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-48" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-49"><span
                    class="msubsup" id="MathJax-Span-50"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-51" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-52"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
      in the QCD matter (and even make it negative).
      This prediction is qualitatively different from the results of
      previous analyses in
      th soft gluon approximation in the double logarithmic
      approximation
      (B. Wu, JHEP 1110, 029 (2011); T. Liou, A. H. Mueller and B. Wu,
      Nucl. Phys. A916, 102 (2013); J.-P. Blaizot and Y. Mehtar-Tani,
      Nucl. Phys. A929, 202 (2014))
      predicting that radiative processes should significantly increase
      <span class="MathJax" id="MathJax-Element-11-Frame" tabindex="0"
        style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-53" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-54"><span
                    class="msubsup" id="MathJax-Span-55"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-56" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-57"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening.
      Our prediction is consistent with the recent data
      of the STAR Collaboration (L. Adamczyk et al., Phys.Rev. C96,
      024905 (2017)),
      which do not show any signal of <span class="MathJax"
        id="MathJax-Element-12-Frame" tabindex="0" style="position:
        relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-58" style="width: 0.927em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 0.994em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(0.34em, 1000.99em,
                1.412em, -1000em); top: -0.994em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-59"><span
                    class="msubsup" id="MathJax-Span-60"><span
                      style="display: inline-block; position: relative;
                      width: 1.027em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.323em,
                        1000.47em, 4.395em, -1000em); top: -3.977em;
                        left: 0em;"><span class="mi"
                          id="MathJax-Span-61" style="font-family:
                          STIXGeneral; font-style: italic;">p</span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; top: -3.827em; left:
                        0.504em;"><span class="mi" id="MathJax-Span-62"
                          style="font-size: 70.7%; font-family:
                          STIXGeneral; font-style: italic;">T<span
                            style="display: inline-block; overflow:
                            hidden; height: 1px; width: 0.054em;"></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  0.994em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.243em;
              border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
      in Au+Au collisions at the
      energy 200 GeV.
      At the end of the talk I discuss the the role of running coupling
      and the effect of variation of the thermal quark mass on
      contribution of the collinear bremsstrahlung and annihilation to
      photon
      emission in <span class="MathJax" id="MathJax-Element-13-Frame"
        tabindex="0" style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
        role="presentation"><nobr><span class="math"
            id="MathJax-Span-63" style="width: 1.069em; display:
            inline-block;"><span style="display: inline-block; position:
              relative; width: 1.207em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(1.676em,
                1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-64"><span class="mi"
                    id="MathJax-Span-65" style="font-family:
                    STIXGeneral; font-style: italic;">A</span><span
                    class="mi" id="MathJax-Span-66" style="font-family:
                    STIXGeneral; font-style: italic;">A</span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.557em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.063em;
              border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>
      collisions in a scheme similar to that used in our previous
      jet quenching analyses.
    </div>
    <br>
    2) <u>П. Д. Григорьев</u>, А. Д. Григорьев, А. М. Дюгаев (короткий
    доклад)<br>
    <b>Неупругое рассеяние нейтронов как подтверждение существования
      нового типа щелевых поверхностных возбуждений в жидком гелии</b><br>
    <div class="abstract tex">
      <br>
      Мы анализируем экспериментальные данные неупругого рассеяния
      нейтронов на тонкой (5 атомарных слоёв) плёнке жидкого гелия при
      трёх разных температурах: T=0.4K, 0.98K и 1.3K. Графики
      интенсивности рассеяния нейтронов, в дополнение к ранее известной
      дисперсии фононов, указывают на ветвь щелевых поверхностных
      возбуждений с энергией активации ~ 4.5K и законом дисперсии,
      похожим на ожидаемую дисперсию сюрфонов – связанных квантовых
      состояний атомов гелия над поверхностью жидкого гелия,
      предложенных и исследованных теоретически. Эти данные, вероятно,
      дают первое прямое экспериментальное подтверждение сюрфонов. Ранее
      эти поверхностные возбуждения получили только косвенное
      экспериментальное обоснование, основанное на температурной
      зависимости коэффициента поверхностного натяжения и на их
      взаимодействии с поверхностными электронами. Существование
      сюрфонов как дополнительного типа поверхностных возбуждений, хотя
      и остается пока ещё спорным, очень важно для различных физических
      свойств поверхности гелия. Мы также анализируем предыдущие
      численные результаты о возбуждениях в жидком гелии и делаем вывод,
      что поверхностные возбуждения, подобные сюрфонам, были получены
      ранее численными расчетами и назывались поверхностными
      резонансными состояниями (resonance interface states).<br>
      ЖЭТФ, 155(2), 338 (2019); arXiv: 1811.04746
    </div>
    <br>
    3) П.Д. Григорьев (короткий доклад)<br>
    <b>Линейное магнитосопротивление в режиме волны зарядовой плотности
      в квазидвумерном проводнике TbTe3</b><br>
    <div class="abstract tex">
      <br>
      Проведены измерения [1] магнитосопротивления (МR) в квазидвумерном
      проводнике TbTe3 с волной зарядовой плотности (ВЗП) в широком
      интервале температур и в магнитных полях до 17 Т. При температуре,
      значительно ниже температуры пайерлсовского перехода, и в больших
      магнитных полях МR демонстрирует линейную зависимость от
      магнитного поля, обусловленную рассеянием нормальных носителей на
      "горячих" точках поверхности Ферми. В режиме движущейся ВЗП в
      слабых магнитных полях наблюдается изменение МR, связанное с
      сильным рассеянием носителей на скользящей ВЗП.
      <br>
      [1] А.В. Фролов, А.П. Орловa, П.Д. Григорьев, В.Н. Зверев, А.А.
      Синченко, Р. Монсо, Магнитосопротивление в режиме движущейся волны
      зарядовой плотности в квазидвумерном проводнике TbTe3, Письма в
      ЖЭТФ, 107 (8), 507-511 (2018)
    </div>
    <br>
    <br>
  </body>
</html>