<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
Уважаемые сотрудники ИТФ,<br>
<br>
На заседании Ученого совета ИТФ в пятницу 18 января будут заслушаны
доклады:<br>
<br>
1) Б.Г. Захаров (длинный доклад)<br>
<b>Recent applications of the light-cone path integral formalism to
the radiative effects in </b><b><span class="MathJax"
id="MathJax-Element-1-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
role="presentation"><nobr><span class="math" id="MathJax-Span-1"
style="width: 1.172em; display: inline-block;"><span
style="display: inline-block; position: relative; width:
1.227em; height: 0px; font-size: 93%;"><span
style="position: absolute; clip: rect(1.728em,
1001.18em, 2.747em, -1000em); top: -2.571em; left: 0em;"><span
class="mrow" id="MathJax-Span-2"><span class="mi"
id="MathJax-Span-3" style="font-family: STIXGeneral;
font-style: italic;">A</span><span class="mi"
id="MathJax-Span-4" style="font-family: STIXGeneral;
font-style: italic;">A</span></span><span
style="display: inline-block; width: 0px; height:
2.571em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.054em;
border-left: 0px solid; width: 0px; height: 0.73em;"></span></span></nobr></span></b><b>-collisions
due to the induced gluon/photon emission in the QCD matter</b><br>
<div class="abstract tex">
<br>
In this talk I discuss some recent applications of the light-cone
path integral (LCPI) approach to the induced gluon/photon emission
in the
quark-gluon plasma (QGP) in <span class="MathJax"
id="MathJax-Element-2-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
role="presentation"><nobr><span class="math" id="MathJax-Span-5"
style="width: 1.069em; display: inline-block;"><span
style="display: inline-block; position: relative; width:
1.207em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(1.676em,
1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
class="mrow" id="MathJax-Span-6"><span class="mi"
id="MathJax-Span-7" style="font-family: STIXGeneral;
font-style: italic;">A</span><span class="mi"
id="MathJax-Span-8" style="font-family: STIXGeneral;
font-style: italic;">A</span></span><span
style="display: inline-block; width: 0px; height:
2.557em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.063em;
border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>-collisions
at RHIC-LHC energies.
I start with a brief discussion of the basic formulas of the LCPI
formalism.
Then I present the results for the nuclear modification of the
photon-tagged jets in <span class="MathJax"
id="MathJax-Element-3-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
role="presentation"><nobr><span class="math" id="MathJax-Span-9"
style="width: 1.069em; display: inline-block;"><span
style="display: inline-block; position: relative; width:
1.207em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(1.676em,
1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
class="mrow" id="MathJax-Span-10"><span class="mi"
id="MathJax-Span-11" style="font-family:
STIXGeneral; font-style: italic;">A</span><span
class="mi" id="MathJax-Span-12" style="font-family:
STIXGeneral; font-style: italic;">A</span></span><span
style="display: inline-block; width: 0px; height:
2.557em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.063em;
border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>
collisions within the jet quenching scheme
based on the LCPI approach to the induced gluon emission.
The calculations are performed for running coupling.
Collisional energy loss is treated as a perturbation
to the radiative mechanism. We obtain a reasonable agreement with
the recent
data from the STAR Collaboration on the mid-rapidity nuclear
modification factor <span class="MathJax"
id="MathJax-Element-4-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>I</mi><mrow
class="MJX-TeXAtom-ORD"><mi>A</mi><mi>A</mi></mrow></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-13" style="width: 1.14em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 1.278em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.128em,
1001.28em, 1.357em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-14"><span
class="msubsup" id="MathJax-Span-15"><span
style="display: inline-block; position: relative;
width: 1.272em; height: 0px;"><span
style="position: absolute; clip: rect(3.111em,
1000.38em, 4.19em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-16" style="font-family:
STIXGeneral; font-style: italic;">I<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.051em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.333em;"><span class="texatom"
id="MathJax-Span-17"><span class="mrow"
id="MathJax-Span-18"><span class="mi"
id="MathJax-Span-19" style="font-size:
70.7%; font-family: STIXGeneral;
font-style: italic;">A</span><span
class="mi" id="MathJax-Span-20"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">A</span></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.194em;
border-left: 0px solid; width: 0px; height: 0.832em;"></span></span></nobr></span>
for Au+Au collisions at <span class="MathJax"
id="MathJax-Element-5-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>200</mn></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-21" style="width: 3.484em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 3.906em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(1.659em,
1003.88em, 3.039em, -1000em); top: -2.557em; left: 0em;"><span
class="mrow" id="MathJax-Span-22"><span class="msqrt"
id="MathJax-Span-23"><span style="display:
inline-block; position: relative; width: 1.126em;
height: 0px;"><span style="position: absolute;
clip: rect(3.322em, 1000.37em, 4.203em,
-1000em); top: -3.977em; left: 0.737em;"><span
class="mrow" id="MathJax-Span-24"><span
class="mi" id="MathJax-Span-25"
style="font-family: STIXGeneral; font-style:
italic;">s</span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; clip: rect(0.912em,
1000.39em, 1.367em, -1000em); top: -1.81em;
left: 0.737em;"><span style="display:
inline-block; overflow: hidden;
vertical-align: -0.089em; border-top: 1.3px
solid; width: 0.389em; height: 0px;"></span><span
style="display: inline-block; width: 0px;
height: 1.065em;"></span></span><span
style="position: absolute; clip: rect(2.821em,
1000.77em, 4.201em, -1000em); top: -3.719em;
left: 0em;"><span style="font-family:
STIXVariants;">√</span><span style="display:
inline-block; width: 0px; height: 3.977em;"></span></span></span></span><span
class="mo" id="MathJax-Span-26" style="font-family:
STIXGeneral; padding-left: 0.313em;">=</span><span
class="mn" id="MathJax-Span-27" style="font-family:
STIXGeneral; padding-left: 0.313em;">200</span></span><span
style="display: inline-block; width: 0px; height:
2.557em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.299em;
border-left: 0px solid; width: 0px; height: 0.965em;"></span></span></nobr></span>
GeV
for parametrization of running <span class="MathJax"
id="MathJax-Element-6-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mi>s</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-28" style="width: 0.856em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.923em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.92em,
1.367em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-29"><span
class="msubsup" id="MathJax-Span-30"><span
style="display: inline-block; position: relative;
width: 0.902em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.55em, 4.201em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-31" style="font-family:
STIXGeneral; font-style: italic;">α</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.552em;"><span class="mi" id="MathJax-Span-32"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">s</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.203em;
border-left: 0px solid; width: 0px; height: 0.653em;"></span></span></nobr></span>
consistent with that necessary for description of the data on
suppression of the high-<span class="MathJax"
id="MathJax-Element-7-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-33" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-34"><span
class="msubsup" id="MathJax-Span-35"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-36" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-37"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>
spectra.
The main part of the talk will be devoted to the radiative
contribution
to the jet <span class="MathJax" id="MathJax-Element-8-Frame"
tabindex="0" style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-38" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-39"><span
class="msubsup" id="MathJax-Span-40"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-41" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-42"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
in the QGP.
For the first time the analysis of the radiative <span
class="MathJax" id="MathJax-Element-9-Frame" tabindex="0"
style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-43" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-44"><span
class="msubsup" id="MathJax-Span-45"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-46" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-47"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
of a fast
quark in the QGP is performed accounting for the real and virtual
two-parton
states beyond the soft gluon approximation. It is shown that
radiative processes can
strongly suppress the radiative <span class="MathJax"
id="MathJax-Element-10-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-48" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-49"><span
class="msubsup" id="MathJax-Span-50"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-51" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-52"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
in the QCD matter (and even make it negative).
This prediction is qualitatively different from the results of
previous analyses in
th soft gluon approximation in the double logarithmic
approximation
(B. Wu, JHEP 1110, 029 (2011); T. Liou, A. H. Mueller and B. Wu,
Nucl. Phys. A916, 102 (2013); J.-P. Blaizot and Y. Mehtar-Tani,
Nucl. Phys. A929, 202 (2014))
predicting that radiative processes should significantly increase
<span class="MathJax" id="MathJax-Element-11-Frame" tabindex="0"
style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-53" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-54"><span
class="msubsup" id="MathJax-Span-55"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-56" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-57"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening.
Our prediction is consistent with the recent data
of the STAR Collaboration (L. Adamczyk et al., Phys.Rev. C96,
024905 (2017)),
which do not show any signal of <span class="MathJax"
id="MathJax-Element-12-Frame" tabindex="0" style="position:
relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>p</mi><mi>T</mi></msub></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-58" style="width: 0.927em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 0.994em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(0.34em, 1000.99em,
1.412em, -1000em); top: -0.994em; left: 0em;"><span
class="mrow" id="MathJax-Span-59"><span
class="msubsup" id="MathJax-Span-60"><span
style="display: inline-block; position: relative;
width: 1.027em; height: 0px;"><span
style="position: absolute; clip: rect(3.323em,
1000.47em, 4.395em, -1000em); top: -3.977em;
left: 0em;"><span class="mi"
id="MathJax-Span-61" style="font-family:
STIXGeneral; font-style: italic;">p</span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span><span
style="position: absolute; top: -3.827em; left:
0.504em;"><span class="mi" id="MathJax-Span-62"
style="font-size: 70.7%; font-family:
STIXGeneral; font-style: italic;">T<span
style="display: inline-block; overflow:
hidden; height: 1px; width: 0.054em;"></span></span><span
style="display: inline-block; width: 0px;
height: 3.977em;"></span></span></span></span></span><span
style="display: inline-block; width: 0px; height:
0.994em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.243em;
border-left: 0px solid; width: 0px; height: 0.693em;"></span></span></nobr></span>-broadening
in Au+Au collisions at the
energy 200 GeV.
At the end of the talk I discuss the the role of running coupling
and the effect of variation of the thermal quark mass on
contribution of the collinear bremsstrahlung and annihilation to
photon
emission in <span class="MathJax" id="MathJax-Element-13-Frame"
tabindex="0" style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>A</mi></math>"
role="presentation"><nobr><span class="math"
id="MathJax-Span-63" style="width: 1.069em; display:
inline-block;"><span style="display: inline-block; position:
relative; width: 1.207em; height: 0px; font-size: 88%;"><span
style="position: absolute; clip: rect(1.676em,
1001.16em, 2.77em, -1000em); top: -2.557em; left: 0em;"><span
class="mrow" id="MathJax-Span-64"><span class="mi"
id="MathJax-Span-65" style="font-family:
STIXGeneral; font-style: italic;">A</span><span
class="mi" id="MathJax-Span-66" style="font-family:
STIXGeneral; font-style: italic;">A</span></span><span
style="display: inline-block; width: 0px; height:
2.557em;"></span></span></span><span style="display:
inline-block; overflow: hidden; vertical-align: -0.063em;
border-left: 0px solid; width: 0px; height: 0.713em;"></span></span></nobr></span>
collisions in a scheme similar to that used in our previous
jet quenching analyses.
</div>
<br>
2) <u>П. Д. Григорьев</u>, А. Д. Григорьев, А. М. Дюгаев (короткий
доклад)<br>
<b>Неупругое рассеяние нейтронов как подтверждение существования
нового типа щелевых поверхностных возбуждений в жидком гелии</b><br>
<div class="abstract tex">
<br>
Мы анализируем экспериментальные данные неупругого рассеяния
нейтронов на тонкой (5 атомарных слоёв) плёнке жидкого гелия при
трёх разных температурах: T=0.4K, 0.98K и 1.3K. Графики
интенсивности рассеяния нейтронов, в дополнение к ранее известной
дисперсии фононов, указывают на ветвь щелевых поверхностных
возбуждений с энергией активации ~ 4.5K и законом дисперсии,
похожим на ожидаемую дисперсию сюрфонов – связанных квантовых
состояний атомов гелия над поверхностью жидкого гелия,
предложенных и исследованных теоретически. Эти данные, вероятно,
дают первое прямое экспериментальное подтверждение сюрфонов. Ранее
эти поверхностные возбуждения получили только косвенное
экспериментальное обоснование, основанное на температурной
зависимости коэффициента поверхностного натяжения и на их
взаимодействии с поверхностными электронами. Существование
сюрфонов как дополнительного типа поверхностных возбуждений, хотя
и остается пока ещё спорным, очень важно для различных физических
свойств поверхности гелия. Мы также анализируем предыдущие
численные результаты о возбуждениях в жидком гелии и делаем вывод,
что поверхностные возбуждения, подобные сюрфонам, были получены
ранее численными расчетами и назывались поверхностными
резонансными состояниями (resonance interface states).<br>
ЖЭТФ, 155(2), 338 (2019); arXiv: 1811.04746
</div>
<br>
3) П.Д. Григорьев (короткий доклад)<br>
<b>Линейное магнитосопротивление в режиме волны зарядовой плотности
в квазидвумерном проводнике TbTe3</b><br>
<div class="abstract tex">
<br>
Проведены измерения [1] магнитосопротивления (МR) в квазидвумерном
проводнике TbTe3 с волной зарядовой плотности (ВЗП) в широком
интервале температур и в магнитных полях до 17 Т. При температуре,
значительно ниже температуры пайерлсовского перехода, и в больших
магнитных полях МR демонстрирует линейную зависимость от
магнитного поля, обусловленную рассеянием нормальных носителей на
"горячих" точках поверхности Ферми. В режиме движущейся ВЗП в
слабых магнитных полях наблюдается изменение МR, связанное с
сильным рассеянием носителей на скользящей ВЗП.
<br>
[1] А.В. Фролов, А.П. Орловa, П.Д. Григорьев, В.Н. Зверев, А.А.
Синченко, Р. Монсо, Магнитосопротивление в режиме движущейся волны
зарядовой плотности в квазидвумерном проводнике TbTe3, Письма в
ЖЭТФ, 107 (8), 507-511 (2018)
</div>
<br>
<br>
</body>
</html>