<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
Уважаемые сотрудники ИТФ,<br>
<br>
В пятницу 24 мая состоится коллоквиум, на котором будет заслушан
доклад:<br>
<br>
D. Christian Glattli (CEA Saclay, France)<br>
<b>Minimal excitations states: From time resolved single particle
fermionic states for Electron Quantum Optics to Digital
communication and music.</b><br>
<br>
In the 90’s, an impressive series of works by theoreticians from the
Landau Institute on electrons shot noise in quantum conductors [1]
and on the statistics of transfer of electrons [2] has leaded to the
emergence of the beautiful concept of minimal excitation states
[3-5]. These minimal excitation states can be generated by applying
voltage pulses on the contact of a conductor to inject short single
electron pulses. These states show minimal noise and provide a
convenient and clean single electron source for electron optics
whose aim is to perform quantum optics tasks with electrons instead
of photons. The minimal excitations states, now called levitons,
have been produced in recent experiments [6] and have triggered a
large number of theoretical works. They have enabled Hong Ou Mandel
like experiments [6] with electrons and single electron quantum
Tomography [7]. Extension to fractionally charged anyons is
possible.<br>
At the root of the minimal excitation property is a specific single
side band modulation of the electron wave by the Lorentzian voltage
pulse. This property can be applied to classical electromagnetic or
acoustic waves for applications in digital communication [8] or in
music sound synthesis.<br>
<br>
[1] G. B. Lesovik, JETP Letters, 49 (9), 592-594 (1989).<br>
[2] L.S. Levitov, G.B. Lesovik, Charge-transport statistics in
quantum conductors, JETP Lett., 55 (9), 555-559 (1992).<br>
[3] A. Ivanov, H.W. Lee, L.S. Levitov, Coherent states of
alternating current, Phys. Rev. B 56(11), 6839-6850 (1997);
cond-mat/9501040<br>
[4] L.S. Levitov, H. Lee, G.B. Lesovik, Electron Counting Statistics
and Coherent States of Electric Current, J. Math. Phys., 37(10),
4845-4866 (1996); cond-mat/9607137.<br>
[5] J. Keeling, I. Klich, and L. S. Levitov, Minimal Excitation
States of Electrons in One-Dimensional Wires, Phys. Rev. Lett. 97,
116403 (2006).<br>
[6] Minimal-excitation states for electron quantum optics using
levitons, J. Dubois, T. Jullien, F. Portier, P. Roche, A. Cavanna,
Y. Jin, W. Wegscheider, P. Roulleau & D. C. Glattli, Nature,
502, 659–663 (2013).<br>
[7] Quantum tomography of an electron, T. Jullien, P. Roulleau, B.
Roche, A. Cavanna, Y. Jin & D. C. Glattli, Nature, 514, 603–607
(2014).<br>
[8] Power Spectrum Density of Single Side Band CPM Using Lorenztian
Frequency Pulses, Haïfa Farès, D. Christian Glattli, Yves Louet,
Jacques Palicot, Preden Roulleau, and Christophe Moy, IEEE Wireless
Communications Letters, 6 (6), 786-789 (2017). <br>
</body>
</html>