<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Уважаемые сотрудники ИТФ,<br>
    <br>
    В пятницу 20 декабря состоится 2 коллоквиума.<br>
    <br>
    На Ученом совете в 11:30 будет заслушан доклад :<br>
    <br>
    Joerg Schmalian (Karlsruhe Institute of Technology)<br>
    <font size="+1"><b>Ordered fluctuations: about vestigial order in
        quantum materials</b></font><br>
    <br>
    A hallmark of the phase diagrams of quantum materials is the
    existence of multiple electronic ordered states. In many cases those
    are not independent, competing phases, but instead display a complex
    intertwinement. In this talk, we focus on a realization of
    intertwined orders with a fluctuation-driven vestigial phase
    characterized by a composite order parameter. In other words, we are
    investigating the condensation of fluctuations.<br>
    We demonstrate that this concept naturally explains the nematic
    state in iron-based superconductors and nematic superconductivity in
    doped topological insulators. In addition we propose a natural
    mechanism for charge 4e superconductivity with half flux quanta. We
    present a formalism that provides a framework to understand the
    complexity of quantum materials based on symmetry, largely without
    resorting to microscopic models. <br>
    <br>
    <br>
    В 15:00 будет заслушан доклад :<br>
    <br>
    Vadim Smelyanskiy (Google, Los Angeles)<br>
    <font size="+1"><b>Non-ergodic delocalized states for efficient
        population transfer within a narrow band of the energy landscape</b></font><br>
    <br>
    <div class="abstract tex">
      We will review the advances and challenges in the field of quantum
      combinatorial optimization and closely related problem of
      low-energy eigenstates and coherent dynamics in transverse field
      quantum spin glass models. We will discuss the role of collective
      spin tunneling that gives rise to bands of delocalized non-ergodic
      quantum states providing the coherent pathway for the population
      transfer (PT) algorithm: the quantum evolution under a constant
      transverse field that starts at a low-energy spin configuration
      and ends up in a superposition of spin configurations inside a
      narrow energy window. We study the transverse field induced
      quantum dynamics of the following spin model: zero energy of all
      spin configurations except for a small fraction of spin
      configuration that form a narrow band at large negative energy. We
      use the cavity method for heavy-tailed random matrices to obtain
      the statistical properties of the low-energy eigenstates in an
      explicit analytical form. In a broad interval of transverse
      fields, they are non-ergodic, albeit extended giving rise to a
      qualitatively new type of quantum dynamics. For large transverse
      fields »1 the typical runtime of PT algorithm <span
        class="MathJax" id="MathJax-Element-1-Frame" tabindex="0"
        style="position: relative;" data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x223C;</mo><msqrt><msup><mn>2</mn><mi>n</mi></msup><mrow
class="MJX-TeXAtom-ORD"><mo>/</mo></mrow><mi
mathvariant="normal">&#x03A9;</mi><msup><mi>e</mi><mi>r</mi></msup></msqrt></math>"
        role="presentation"><nobr><span class="math" id="MathJax-Span-1"
            style="width: 4.052em; display: inline-block;"><span
              style="display: inline-block; position: relative; width:
              4.545em; height: 0px; font-size: 88%;"><span
                style="position: absolute; clip: rect(1.523em,
                1004.55em, 2.903em, -1000em); top: -2.557em; left: 0em;"><span
                  class="mrow" id="MathJax-Span-2"><span class="mo"
                    id="MathJax-Span-3" style="font-family:
                    STIXGeneral;">∼</span><span class="msqrt"
                    id="MathJax-Span-4" style="padding-left: 0.313em;"><span
                      style="display: inline-block; position: relative;
                      width: 3.523em; height: 0px;"><span
                        style="position: absolute; clip: rect(3.049em,
                        1002.76em, 4.204em, -1000em); top: -3.977em;
                        left: 0.737em;"><span class="mrow"
                          id="MathJax-Span-5"><span class="msubsup"
                            id="MathJax-Span-6"><span style="display:
                              inline-block; position: relative; width:
                              0.929em; height: 0px;"><span
                                style="position: absolute; clip:
                                rect(3.088em, 1000.47em, 4.19em,
                                -1000em); top: -3.977em; left: 0em;"><span
                                  class="mn" id="MathJax-Span-7"
                                  style="font-family: STIXGeneral;">2</span><span
                                  style="display: inline-block; width:
                                  0px; height: 3.977em;"></span></span><span
                                style="position: absolute; top: -4.38em;
                                left: 0.5em;"><span class="mi"
                                  id="MathJax-Span-8" style="font-size:
                                  70.7%; font-family: STIXGeneral;
                                  font-style: italic;">n</span><span
                                  style="display: inline-block; width:
                                  0px; height: 3.977em;"></span></span></span></span><span
                            class="texatom" id="MathJax-Span-9"><span
                              class="mrow" id="MathJax-Span-10"><span
                                class="mo" id="MathJax-Span-11"
                                style="font-family: STIXGeneral;">/</span></span></span><span
                            class="mi" id="MathJax-Span-12"
                            style="font-family: STIXGeneral;">Ω</span><span
                            class="msubsup" id="MathJax-Span-13"><span
                              style="display: inline-block; position:
                              relative; width: 0.81em; height: 0px;"><span
                                style="position: absolute; clip:
                                rect(3.323em, 1000.41em, 4.201em,
                                -1000em); top: -3.977em; left: 0em;"><span
                                  class="mi" id="MathJax-Span-14"
                                  style="font-family: STIXGeneral;
                                  font-style: italic;">e</span><span
                                  style="display: inline-block; width:
                                  0px; height: 3.977em;"></span></span><span
                                style="position: absolute; top:
                                -4.266em; left: 0.444em;"><span
                                  class="mi" id="MathJax-Span-15"
                                  style="font-size: 70.7%; font-family:
                                  STIXGeneral; font-style: italic;">r<span
                                    style="display: inline-block;
                                    overflow: hidden; height: 1px;
                                    width: 0.016em;"></span></span><span
                                  style="display: inline-block; width:
                                  0px; height: 3.977em;"></span></span></span></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; clip: rect(2.944em,
                        1002.79em, 3.42em, -1000em); top: -3.978em;
                        left: 0.737em;"><span style="display:
                          inline-block; position: relative; width:
                          2.786em; height: 0px;"><span style="position:
                            absolute; font-family: STIXGeneral; top:
                            -3.977em; left: 0em;">‾<span style="display:
                              inline-block; width: 0px; height:
                              3.977em;"></span></span><span
                            style="position: absolute; font-family:
                            STIXGeneral; top: -3.977em; left: 2.286em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span><span
                            style="font-family: STIXGeneral; position:
                            absolute; top: -3.977em; left: 0.36em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span><span
                            style="font-family: STIXGeneral; position:
                            absolute; top: -3.977em; left: 0.745em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span><span
                            style="font-family: STIXGeneral; position:
                            absolute; top: -3.977em; left: 1.13em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span><span
                            style="font-family: STIXGeneral; position:
                            absolute; top: -3.977em; left: 1.516em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span><span
                            style="font-family: STIXGeneral; position:
                            absolute; top: -3.977em; left: 1.901em;">‾<span
                              style="display: inline-block; width: 0px;
                              height: 3.977em;"></span></span></span><span
                          style="display: inline-block; width: 0px;
                          height: 3.977em;"></span></span><span
                        style="position: absolute; clip: rect(2.821em,
                        1000.77em, 4.201em, -1000em); top: -3.855em;
                        left: 0em;"><span style="font-family:
                          STIXVariants;">√</span><span style="display:
                          inline-block; width: 0px; height: 3.977em;"></span></span></span></span></span><span
                  style="display: inline-block; width: 0px; height:
                  2.557em;"></span></span></span><span style="display:
              inline-block; overflow: hidden; vertical-align: -0.18em;
              border-left: 0px solid; width: 0px; height: 0.965em;"></span></span></nobr></span></div>
    scales with n and Ω as that of the Grover’s quantum search, except
    for the small correction to the exponent θ ≈ 1/(2). The model we
    consider is non-integrable. As a result, our PT protocol does not
    require any fine-tuning of and may be initialized in a computational
    basis state. We argue that our approach can be applied to study PT
    protocol in other optimization problems with the potential quantum
    advantage over classical algorithms.<br>
  </body>
</html>