<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    Уважаемые коллеги!<br>
    <br>
    Напоминаю, что в 16:00 состоится коллоквиум, на котором будет
    заслушан доклад:<br>
    <br>
    A. Polkovnikov (Boston University, USA)
    <h2>Understanding quantum and classical chaos in Hamiltonian systems
      through adiabatic transformations</h2>
    <div class="abstract tex"> Chaos is synonymous to unpredictability.
      In the case of classical systems this unpredictability is
      expressed through exponential sensitivity of trajectories to tiny
      fluctuations of the Hamiltonian or to the initial conditions. It
      is well known that chaos is closely related to ergodicity or
      emergence of statistical mechanics at long times, but the precise
      relations between them are still debated. In quantum systems the
      situation is even more controversial with trajectories being
      ill-defined. A standard approach to defining quantum chaos is
      through emergence of the random matrix theory. However, as I will
      argue, this approach is rather related to the eigenstate
      thermalization hypothesis and ergodicity than to chaps. In this
      talk I will suggest that one can use fidelity susceptibility of
      equivalently geometric tensor and quantum Fisher information as a
      definition of chaos, which applies both to quantum and classical
      systems and which is related to long time tails of the
      auto-correlation functions of local perturbations. Through this
      approach we can establish of existence of the intermediate chaotic
      but non-ergodic regime separating integrable and ergodic phases,
      which have maximally sensitive eigenstates. I will discuss how
      this measure is also closely related to recently proposed
      definition of chaos through the Krylov complexity or the operator
      growth and that there is very interesting and still unexplained
      duality between short and long time behavior of chaotic and
      integrable systems As a specific example of this approach I will
      apply these ideas to interacting disordered systems and show that
      (many-body) localization is unstable in thermodynamic limit
      irrespective of the disorder strength. </div>
    <br>
    <br>
    ID и пароль онлайн-трансляций в Zoom те же, что и для предыдущих
    трансляций докладов на Ученом совете:<br>
    <div class="moz-cite-prefix"> <a class="moz-txt-link-freetext"
href="https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09">https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09</a><br>
      Meeting ID: 968 9936 4518<br>
      Пароль: 250319</div>
    <br>
  </body>
</html>