<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /></head><body style='font-size: 10pt; font-family: Verdana,Geneva,sans-serif'>
<p><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">Уважаемые коллеги!</span><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">На заседании Ученого совета ИТФ в пятницу 12.09 будут заслушаны 2 доклада:</span><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;"></span></p>
<p><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">11:30 </span></strong></p>
<p><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">V.P. Mineev</span></strong><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">URhGe - Altermagnetic Ferromagnet</span></strong><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">It is well known that the anomalous Hall effect in ferromagnetic and strongly paramagnetic metals in addition to electron skew scattering on impurities is determined by internal mechanism linked to the Berry curvature, a quantum-mechanical property of the electron states of a perfect crystal. Experimentally, however, it has been established that the Berry curvature does not play any role in the Hall resistance of the ferromagnet URhGe. URhGe is so called altermagnetic ferromagnet which crystal symmetry includes operation of time inversion only in combination with rotations and reflections. The explanation for strictly zero Berry curvature of electronic states in this material lies in the non-symmorphic symmetry of its crystal lattice.</span></p>
<p><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">12:30 </span></strong></p>
<p><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">V.P. Mineev</span></strong><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><strong><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">Phase Diagram of UTe_2</span></strong><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">The pressure-temperature phase diagram of superconducting UTe_2 with three lines of the second- order phase transitions cannot be explained in terms of successive transitions to superconducting states with a decrease in symmetry. The problem is solved using a two-band description of the superconducting state of UTe_2.</span><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">ID и пароль онлайн-трансляций в Zoom те же, что и для предыдущих трансляций семинаров и докладов на Ученом совете:</span><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><a style="color: #00acff; font-size: 13px; font-family: monospace; background-color: #ffffff;" href="https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09" target="_blank" rel="noopener noreferrer">https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09</a><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">Meeting ID: 968 9936 4518</span><br style="font-size: 13px; font-family: monospace; background-color: #ffffff;" /><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;">Пароль: 250319</span></p>
<p><br /></p>
<p><span style="font-size: 13px; font-family: monospace; background-color: #ffffff;"><span>На завтра 12.09.25г. в 10-05 автобус запланирован.</span><br /><br /><span>Место сбора 11-я парковая, поворот на Щелковское шоссе.</span><br /><span>Форд-Транзит А 797МА 150</span><br /><br /><span>тел. 8-903-019-86-80</span><br /><span>Владимир Николаевич</span><br /><br /><a style="color: #00acff;" href="https://yandex.ru/maps/213/moscow/?from=mapframe&indoorLevel=1&ll=37.804151%2C55.809870&mode=usermaps&source=mapframe&um=constructor%3A1gjtTU9HvRzE3mvpCCP6B_Io424BFoMD&utm_source=mapframe&z=17.4" target="_blank" rel="noopener noreferrer">https://yandex.ru/maps/213/moscow/?from=mapframe&indoorLevel=1&ll=37.804151%2C55.809870&mode=usermaps&source=mapframe&um=constructor%3A1gjtTU9HvRzE3mvpCCP6B_Io424BFoMD&utm_source=mapframe&z=17.4</a><span></span><br /><br /><br /></span></p>
</body></html>